’ Aide à la Décision UMR 7243 201 M CAHIER DU 3 7

نویسنده

  • Michel Balinski
چکیده

The validity of majority rule in an election with but two candidates— and so also of Condorcet consistency—is challenged. Axioms based on evaluating candidates—paralleling those of K. O. May characterizing majority rule for two candidates based on comparing candidates—lead to another method, majority judgment, that is unique in agreeing with the majority rule on pairs of “polarized” candidates. It is a practical method that accommodates any number of candidates, avoids both the Condorcet and Arrow paradoxes, and best resists strategic manipulation. It may also be viewed as a “solution” to Dahl’s (reformulated) intensity problem in that an intense minority sometimes defeats an apathetic majority.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

de Systèmes pour l ’ Aide à la Décision UMR 7243 201 M CAHIER DU 3 7

The validity of majority rule in an election with but two candidates— and so also of Condorcet consistency—is challenged. Axioms based on evaluating candidates—paralleling those of K. O. May characterizing majority rule for two candidates based on comparing candidates—lead to another method, majority judgment, that is unique in agreeing with the majority rule on pairs of “polarized” candidates....

متن کامل

Laboratoire d ’ Analyse et Modélisation de Systèmes pour l ’ Aide à la Décision UMR 7243 201 5 On social rankings and their properties

Several real-life complex systems, like human societies or economic networks, are formed by interacting units characterized by patterns of relationships that may generate a group-based social hierarchy. In this paper, we address the problem of how to rank the individuals with respect to their ability to “influence” the relative strength of groups in a society. We also analyse the effect of basi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017